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Abstract

A recursive version of the Kohn variational principle for the Green's operator is presented. An expression for the o�-

shell T-matrix is derived which is valid in the presence of a hard wall potential and which is conveniently evaluated

using the recursive algorithm. The o�-shell T-matrix elements for scattering systems with and without hard wall

components to the potential are computed using this algorithm. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

For an isolated collision at a given energy, the
most complete physical description consists of the
probabilities of all possible transitions between
quantum states of the colliding particles before
and after the collision. This information is con-
tained in the on-shell matrix elements of the
T-operator. The term ``on-shell'' means that the
matrix elements are evaluated between states of
the same energy (and at the same energy at which
the intrinsically energy-dependent T-operator is
evaluated). This condition merely re¯ects the
conservation of energy in the absence of an ex-
ternal ®eld. It is often asserted that only the on-
shell T-matrix elements have physical signi®cance
or correspond to observable results [1]. It is nev-
ertheless possible to calculate o�-shell matrix ele-

ments of the T-operator between states of di�erent
energies.

When an electromagnetic ®eld is present, a
collision can result in transitions between states of
di�erent energies. In such cases, approximate
methods involving ®eld-free T-matrix operators
are sometimes used to compute the transition
probabilities. An example is the Kroll±Watson
approximation for charged particle collisions in
the presence of a low-frequency laser ®eld, which
expresses the scattering probabilities in terms of
on-shell ®eld free cross sections [2]. The electron±
atom scattering experiments of Wallbank and
Holmes [3±5] showed the limitations of this
approximation. Subsequent theoretical studies
showed that the Kroll±Watson approximation
could be improved if o�-shell T-matrix informa-
tion was included [6,7].

Another example in which o�-shell information
can be used arises in the theory of spectral line-
shapes. Several Liouville space formalisms have
been derived for the shape of an absorption or
emission line as a function of frequency [8±10].
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Fano's derivation for lineshapes under conditions
in which the absorbing or emitting particle un-
dergoes binary collisions with other particles (the
binary collision approximation) is the most rel-
evant to this discussion. Fano's expression is
extremely complicated and involves o�-shell T-
matrix elements for the colliding particles in the
absence of a ®eld. When the electric ®eld is tuned
to near the resonant frequency of absorption or
emission (with ``near'' being a somewhat subjective
concept), Fano's expression simpli®es to one in-
volving only on-shell T-matrix quantities; this is
the impact approximation, so-called because the
duration of the collision is assumed to be much
less than the time between collisions. The impact
approximation has been widely and successfully
used in lineshape studies, but recent experiments
on the H2S±He collision system have suggested
that this approximation may not be appropriate
under some experimental conditions [11]. In order
to test the impact approximation, we require the
ability to compute o�-shell T-matrix elements.

Even in the absence of an external ®eld, the o�-
shell T-matrix is employed in approximate meth-
ods, such as multiple scattering expansions [12]
and the impulse approximation [13], for systems
too large or complicated to treat exactly. The o�-
shell T-matrix has recently appeared in studies of
atom±diatom [25,14], atom±surface [15], mole-
cule±surface [16], and charge transfer [17] scatter-
ing systems, and has been used to extend the range
of accuracy of the ®xed-nuclei approximation for
electron±molecule scattering at low energies
[18,19].

Several theoretical studies have been devoted to
the o�-shell T-matrix [20±31]; it has been com-
puted analytically for a handful of simple 1-D
potentials such as hard walls [24] and square wells
[31], and semiclassical [28,30] and variational ap-
proaches [32] have been derived as well. Unfortu-
nately, the utility of the o�-shell T-matrix is
limited by the fact that practical algorithms for its
computation have been presented only for 1-D
systems. For lineshape studies in particular, it is
important that o�-shell T-matrix elements be
computed for more complicated potentials. In this
paper a technique is presented which can compute
the o�-shell T-matrix for more general systems.

The algorithm developed in this paper is based
on the Kohn variational principle for the Green's
operator presented by Miller and Jansen op de
Haar [33]. The di�culty with variational ap-
proaches is that as the dimensionality of the prob-
lem increases the basis size can become extremely
large. To circumvent this problem, we divide con-
®guration space into cells, derive a recursion rela-
tion for the coe�cients of the variational solution
in one cell in terms of the coe�cients in the
surrounding cells, and recombine them to evaluate
the variational functional, which is a matrix ele-
ment of the Green's operator. In Section 2, we will
describe the recursion relation for a simple 1-D
problem and discuss the relation of the technique to
the o�-shell T-matrix. In Section 3, computational
details for the trial problems are given. In Section 4,
o�-shell T-matrix results for a 1-D Lennard-Jones
potential and a model rotationally inelastic atom±
diatom problem are presented, and Section 5 con-
cludes.

2. Theory

We ®rst discuss the recursive Kohn variational
principle method for Green's operator matrix ele-
ments in general. We then apply it to the compu-
tation of o�-shell T-matrix elements for systems
with or without a hard wall potential.

2.1. Recursive KVP

For concreteness we discuss the case of 1-D
scattering of a point particle with reduced mass l
in a spherically symmetric potential. At the end of
this section we will touch brie¯y on the straight-
forward generalization to more complicated sys-
tems. We have a Hamiltonian

H � ÿ �h2

2l
d2

dr2

�
ÿ l�l� 1�

r2

�
� V �r� �1�

and seek to compute the matrix elements

hf jG��E�jgi � lim
�!1

Z 1

a
dr
Z 1

a
dr0f �r�

� hrj�E ÿ H � i��ÿ1jr0ig�r0�; �2�
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where a may or may not be zero, between L2

functions f and g. Miller and Jansen op de Haar
[33] noted that the functional

I �v; ~v� � h~vjgi � hf jvi � h~vjH ÿ Ejvi �3�

is stationary to second order about the desired
matrix element as long as the basis for v and ~v
behaves only as an outgoing plane wave at in®nite
r, which enforces the �i� boundary condition.
Note that in the matrix element (3) the function
f �r� appears in the integrand rather than its
complex conjugate. This de®nition of the inner
product is a common practice and will apply
throughout the paper [33].

We assume that f �r�, g�r� and V �r� are all
negligible for r P rmax, then divide the range
�a; rmax� into N sectors (which need not be equal
in size) de®ned by the N coordinate values r � ri,
with rN � rmax. Next we choose bases f/i

n;
n � 1; . . . ; nig on each sector. For convenience we
take these functions to be real and orthonormal,
but neither restriction is necessary. We assume that
the functions /1

n obey some suitable boundary
condition at r � a (typically /1

n�a� � 0 for all n). It
is important, as in the cellular R- or log-derivative
matrix algorithm, that the functions /i

n do not
otherwise obey any ®xed boundary condition at
r � ri or r � ri�1 [34]. Finally, we take the range
�rmax;1� to be the �N � 1�th sector and let
/N�1

1 �r� � h�l �kr�, which is the outgoing Ricatti±
Hankel function with k � ���������

2lE
p

=�h.
We expand v and ~v in this basis

v �
XN�1

i�1

Xni

n�1

ci
n/

i
n�r�; �4�

~v �
XN�1

i�1

Xni

n�1

di
n/

i
n�r�: �5�

We can construct Hamiltonian matrix elements on
the range �a; rmax�
h/i

mjH j/j
ni � h/i

mjH j/i
nidij � Hi

mndij: �6�

Since the sector bases obey no ®xed boundary
conditions at the boundaries between sectors, the
Hamiltonian matrices on each sector are asym-
metric,

Hi
mn � Hi

nm ÿ
�h2

2l
/i

m�ri�1�/i0
n�ri�1�

h
ÿ /i

n�ri�1�/i0
m�ri�1� ÿ /i

m�ri�/i0
n�ri�

� /i
n�ri�/i0

m�ri�
i
; �7�

where the prime denotes di�erentiation with re-
spect to r. We can write in matrix form

Hi � Hi
S �Ui

lWlU
iT

l �Ui
rWrU

iT

r �2 6 i 6 N�;
�8�

where Hi
S is the symmetric part of Hi,

Wl � ÿWr �
0 ÿ �h2

4l
�h2

4l 0

 !
�9�

and Ui
l and Ui

r are ni � 2 matrices with elements

Ui
l

� �
n1
� /i

n�ri�; �10�

Ui
l

� �
n2
� d

dr
/i

n�ri�; �11�
Ui

r

� �
n1
� /i

n�ri�1�; �12�

Ui
r

� �
n2
� d

dr
/i

n�ri�1�: �13�

For sector 1 the second term on the right-hand
side of Eq. (8) is absent, since the functions /1

n
obey ®xed boundary conditions at r � a. On each
sector we also require the ni � 1 vectors whose
elements are

f i� �n � h/i
njf i; �14�

gi� �n � h/i
njgi; �15�

ci� �n � ci
n; �16�

di� �n � di
n: �17�

We now insert the expression (5) into Eq. (3)
and impose the requirements of continuity and
di�erentiability of v and ~v as constraints on I. We
have, in matrix form

I �
XN

i�1

fT
i ci

n
� dT

i gi � dT
i �Hi ÿ E1�ci

� KiT

c �UiT

r ci ÿUi�1T

l ci�1�
� �dT

i Ui
r ÿ dT

i�1Ui�1
l �Ki

d

o
; �18�
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where Ki
c is the 2� 1 vector of Lagrange multi-

pliers corresponding to the constraints of conti-
nuity and di�erentiability of v at r � ri while Ki

d is
its analog for ~v. Inspection of Eq. (18) shows that
di�erentiation with respect to dT

i and KiT

c yields
coupled linear equations for ci, ci�1, and Ki

d , while
di�erentiation with respect to ci and Ki

d yields
equations for dT

i , dT
i�1, and KiT

c . We now turn to the
solution of these equations.

2.1.1. Solution for the coe�cients on the ®rst sector
After di�erentiating Eq. (18) with respect to dT

i
and KiT

c and setting these derivatives equal to zero,
we arrive at the following linear equation for c1:

�a1�E� �U1
r WrU

1T

r �c1 � ÿg1 ÿU1
r K

1
d �19�

or

a1�E�c1 � ÿg1 ÿU1
r
~K1

d ; �20�
where a1 is the symmetric matrix

a1�E� � H1
S ÿ E1 �21�

and

~K1
d � K1

d �WrU
1T

r c1: �22�
(We suppress the energy argument from now on.)
Eq. (20) has the solution

c1 � ÿaÿ1
1 g1 ÿ aÿ1

1 U1
r
~K1

d : �23�
We use the conditions that the solution be

continuous and di�erentiable at r � r1 ± in matrix
form, U1T

r c1 � U2T

l c2 ± to eliminate ~K1
d in favor of

c1 and c2. This leads to the recursion relation

c1 � ÿaÿ1
1 1
�
ÿU1

r xÿ1
1 U1T

r aÿ1
1

�
g1

� aÿ1
1 U1

r xÿ1
1 U2T

l c2; �24�

c1 � c0
1 � aÿ1

1 U1
r xÿ1

1 U2T

l c2; �25�
where x1 � U1T

r aÿ1
1 U1

r . Note that

U1T

r c0
1 �

0

0

� �
and U1T

r c1 � U2T

l c2;

so that the constraints are satis®ed.
Similarly, di�erentiating Eq. (18) with respect to

c1 and K1
d yields

dT
1 � ÿfT

1 1
�
ÿ aÿ1

1 U1
r xÿ1

1 U1T

r

�
aÿ1

1

� dT
2 U2

l xÿ1
1 U1T

r aÿ1
1 ; �26�

dT
1 � d0T

1 � dT
2 U2

l xÿ1
1 U1T

r aÿ1
1 : �27�

2.1.2. Solutions for the coe�cients on intermediate
sectors

Next, we di�erentiate with respect to dT
2 and

K2T

c . Now we have

�a2 �U2
l WlU

2T

l �U2
r WrU

2T

r �c2

� ÿg2 �U2
l K

1
d ÿU2

r K
2
d �28�

or

a2c2 � ÿg2 �U2
l
~K1

d ÿU2
r
~K2

d ; �29�
where it is easily shown that the vector ~K1

d is the
same as that from the previous section, and

a2 � H2
S ÿ E1: �30�

Plugging the solutions to Eq. (19) into Eq. (29)
yields the modi®ed equation

~a2c2 � ÿ~g2 ÿU2
r
~K2

d ; �31�
where

~a2 � a2 �U2
l xÿ1

1 U2T

l �32�
and

~g2 � g2 �U2
l xÿ1

1 U1T

r aÿ1
1 g1: �33�

Eq. (31) is formally identical to Eq. (20), and its
solution in terms of the coe�cients c3 proceeds
exactly as did the solution of Eq. (20) for c1. Thus,

c2 � ÿ~aÿ1
2 1
�
ÿU2

r xÿ1
2 U2T

r ~aÿ1
2

�
~g2

� ~aÿ1
2 U2

r xÿ1
2 U3T

l c3

� c0
2 � ~aÿ1

2 U2
r xÿ1

2 U3T

l c3; �34�
where now

x2 � U2T

r ~aÿ1
2 U2

r : �35�
As before, U2T

r c2
0 � 0. Again, d2 obeys an

equation analogous to the transpose of Eq. (34)
with d3 in place of c3, ~f2 replacing ~g2, and ~f2 de-
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®ned by Eq. (33) with f2 replacing g2. This treat-
ment applies to all sectors 2 6 i 6 N . For ci, we
have

ci � ÿ~aÿ1
i 1
�
ÿUi

rx
ÿ1
i UiT

r ~aÿ1
i

�
~gi

� ~aÿ1
i Ui

rx
ÿ1
i U

�i�1�T
l ci�1

� c0
i � ~aÿ1

i Ui
rx
ÿ1
i U

�i�1�T
l ci�1 �36�

with

~ai � Hi
S

ÿ ÿ E1
��Ui

lx
ÿ1
iÿ1UiT

l ; �37�

xi � UiT

r ~aÿ1
i Ui

r �38�

and

~gi � gi �Ui
lx
ÿ1
iÿ1U�iÿ1�T

r ~aÿ1
iÿ1

~giÿ1: �39�

Corresponding equations and de®nitions apply to
the solutions for di.

2.1.3. Solution for the coe�cients on the Nth sector
On the N th sector, we have

~aN cN � ÿ~gN ÿUN
r

~KN
d : �40�

Because f, g and the potential are negligible at
r � rmax, and since h�l �kr� is an eigenfunction with
energy E for r P rmax, the basis set expansion on
the �N � 1�th sector contributes to the functional
only through the constraints. This fact is re¯ected in
the fact that the summation over sectors in Eq.
(18) extends only to N rather than N � 1, and that
only in the constraint terms do the coe�cients cN�1

1

and dN�1
1 appear.

For notational convenience, we de®ne the 2� 1
vector q as

q � UN�1T

l � h�l �krmax�
dh�l
dr �krmax�

0@ 1A: �41�

Di�erentiating Eq. (18) with respect to dN�1
1 and

setting the result equal to zero yields

UN�1
l KN

d � qTKN
d � 0: �42�

Recall that

~KN
d � KN

d �WrU
NT

r cN ; �43�
� KN

d ÿWlqcN�1
1 : �44�

Since Wl is antisymmetric, we have

qT ~KN
d � 0; �45�

that is, ~KN
d and KN

d satisfy the same equation.
We now use the constraint (45) to solve for

cN�1
1 ,

cN�1
1 � ÿ�qTxÿ1

N q�ÿ1
qTxÿ1

N UNT

r ~aÿ1
N ~gN �46�

which gives

cN � ÿ~aÿ1
N 1
�
ÿUN

r xÿ1
N UNT

r ~aÿ1
N

�
~gN

ÿ ~aÿ1
N UN

r xÿ1
N q�qTxÿ1

N q�ÿ1
qTxÿ1

N UNT

r ~aÿ1
N ~gN ;

�47�

cN � c0
N � cg

N ; �48�

where evidently all the e�ects of the asymptotic
behavior of the Green's operator are contained in
cg

N .
An analogous procedure for dT

N gives

dT
N � ÿ~fT

N 1
�
ÿ ~aÿ1

N UN
r xÿ1

N UNT

r

�
~aÿ1

N

ÿ ~fT
N ~aÿ1

N UN
r xÿ1

N q�qTxÿ1
N q�ÿ1

qTxÿ1
N UNT

r ~aÿ1
N ;

�49�

dT
N � d0T

N � dgT

N : �50�

2.1.4. Assembling the matrix element
The last step in the evaluation of the Green's

operator matrix element is the substitution of the
solutions ci and dT

i into Eq. (18). Mercifully, we do
not need to evaluate all these coe�cients explicitly;
we only require c0

i , d0T

i , cg
N and dgT

N . This exercise is
straightforward but tedious, so I will give the re-
sults followed by a few comments which may help
the interested or cautious reader to verify them.

The ®nal result is

hf jG��E�jgi � I �
XN

i�0

I0
i � Ig

N ; �51�
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where

I0
i � ÿ~fT

i ~aÿ1
i ~gi � ~fT

i ~aÿ1
i Ui

rx
ÿ1
i UiT

r ~aÿ1
i ~gi �52�

in which, by de®nition, ~f1 � f1, ~g1 � g1 and
~a1 � a1. Also,

Ig
N � ÿ~fT

N ~aÿ1
N UN

r q�qTxÿ1
N q�ÿ1

qTUNT

r ~aÿ1
N ~gN : �53�

For each sector i, the contributions to the
functional from previous sectors add to e�ectively
replace f i, gi, and ai with ~f i, ~gi, and ~ai, respectively.
Although in Eq. (18) the full sector Hamiltonians
must be used, it turns out that all contributions to
the total functional due to the anti-Hermitian
parts of the Hamiltonians cancel. To show this,
one uses the facts that

UiT

r c0
i � UiT

r d0
i �

0

0

� �
and that Wr � ÿWl.

2.1.5. Multichannel Green's operator elements
Extension to multiple dimensions is straight-

forward. One divides con®guration space into
cells. On the boundaries of each cells, surface bases
are constructed. The constraints of continuity of v,
~v, and their normal derivatives across the bound-
aries are imposed on each component of v and ~v
in the surface basis. Thus, for example, the vec-
tors Ki

c;d will have dimension 2ns � 1 and xi has
dimension 2ns � 2ns, where ns is the number of
surface functions on which the continuity and
di�erentiability conditions are being imposed in
the ith sector.

As an example, consider the atom-rigid rotor
scattering problem, which will be treated in more
detail in the next section. The coordinates are R,
the distance between the atom and the center of
mass of the rigid rotor, and the spherical polar
coordinates for the atom and the rigid rotor. We
divide R into N sectors; thus, the ``boundary sur-
face'' for the ith cell consists of the radial values
Riÿ1 and Ri. For each value of Ri, we de®ne a basis
in the remaining coordinates, and the di�erentia-
bility and continuity of v and ~v across R � Ri is
imposed separately on each component. The re-
sulting recursion equations have a form identical
to those for the 1-D situation, except that Ui

l has

dimension ni � 2niÿ1
s , Ui

r has dimension ni � 2ni
s,

and xi has dimension 2ni
s � 2ni

s, where as before ni

is the size of the sector basis and ni
s is the size of the

surface basis at R � Ri.

2.2. O�-shell T-matrix in the presence of a hard wall

When no hard wall is present, the T-matrix can
be written in terms of the Green's operator as

T � V� VG��E�V: �54�
To compute matrix elements of the form
hkf jT �E�jkii, we would substitute f �r� � V �r��
exp �ikf � r�=�2p�3=2

and g�r� � V �r� exp�iki � r�=
�2p�3=2

into Eq. (3). When the potential has a hard
wall contribution so that it is formally in®nite
within the region bounded by the wall, expression
(54) may be problematic.

Here we brie¯y review the o�-shell T-matrix
and develop an expression for the T-matrix ele-
ment that is valid when a hard wall is present and
reduces to Eq. (54) when it is not. The treatment
herein is based on that of Laughlin and Scott [24].
Let us write the Hamiltonian H as H � H0 � V

and de®ne eigenstates /0
i;f of H0 such that

H0/
0
i;f � Ei;f/

0
i;f ; �55�

where Ei;f is energy of the initial or ®nal state.
These energies need not be equal, or equal to the
energy E at which the Green's operator is eval-
uated. For our 1-D example, H0 would be the
1-D kinetic energy operator and /0

i;f � ai;f jl�ki;fr�,
where jl is the Ricatti±Bessel function and ai;f are
suitable normalization constants. We seek

h/0
f jT�E�j/0

i i � h/0
f jVX��E�j/0

i i; �56�
h/0

f jT�E�j/0
i i �

Z 1

0

dr/0
f �r�V �r�hrjX��E�j/0

i i;
�57�

h/0
f jT�E�j/0

i i �
Z 1

0

dr/0
f �r�V �r�W��r; ki;E�; �58�

where X��E� is the Mùller operator. The function
W��r; ki;E� obeys the inhomogeneous Schr�odinger
equation

�E ÿH�W��r; ki;E� � �E ÿ Ei�/0
i �59�
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and satis®es the boundary condition

W��r; ki;E� � 0 �r 6 a�: �60�
As r becomes in®nite, W� behaves as the initial

state /0
i plus a linear combination of outgoing

wave eigenfunctions of H0 at energy E. Note that
beyond the range of the potential such a function
will obey Eq. (59). Following Laughlin and Scott
[24], we de®ne

VW��r; ki;E� � ÿ�E ÿ Ei�/0
i �

�h2

2l
dW��r; ki;E�

dr

� d�r ÿ a�; r 6 a;

VW��r; ki;E� � V �r�W��r; ki;E�; r > a: �61�

If only a hard wall were present, the local potential
V �r� would be zero for r > a.

Now we write W� for r > a as

W��r; ki;E� � pi�r� � �G�E��qi��r�; �62�
where we de®ne the functions

pi;f�r� � c�r�/0
i;f �63�

and

qi;f�r� � �E ÿ Ei;f��1ÿ c�r��/0
i;f

ÿ �h2

2l
2

dc
dr

d/0
i;f

dr

 
� /0

i;f

d2c
dr2

!
� c�r�V �r�/0

i;f : �64�
The regular cuto� function c�r� is de®ned such

that when r P rmax, c�r� � 1 and dc=dr � d2c=
dr2 � 0. Note that with these de®nitions,

�E ÿH�W� � �E ÿ Ei�/0
i �65�

for r > a, regardless of what c�r� is. Note further
that

�E ÿ Ei;f�/0
i;f � qi;f � �E ÿH�pi;f�r�: �66�

When a hard wall is present, we choose c�r� such
that c�a� � 0. With this choice, pi�a� � 0, so that
v�a� � �G��E�qi��a� � 0, and the trial function v
can be expanded in a basis which goes to zero at
r � a, and likewise with ~v.

We now proceed to evaluate the matrix element
in Eq. (58). Since V �r� is negligible for r P
rmax � b, we can truncate the integral in Eq. (58) at
r � b. We then have

h/0
f jT�E�j/0

i i �
Z b

0

dr/0
f �r�V �r�W��r�

�
Z a

0

dr/0
f �r�V �r�W��r�

�
Z b

a
dr/0

f �r�V �r�Wl�r�

� ÿ�E ÿ Ei�
Z a

0

dr/0
f �r�/0

i �r�

� �h2

2l
/0

f �a�W�
0�a�

�
Z b

a
dr/0

f �r�V �r�W��r�; �67�

where the prime denotes di�erentiation with re-
spect to r. Now we evaluateZ b

a
dr/0

f �r�V �r�W��r�

�
Z b

a
dr/0

f �r��E ÿ H0�W��r�

ÿ �E ÿ Ei�
Z b

a
dr/0

f �r�/0
i �r�

� �h2

2l
/0

f �r�W�
0�r�

h
ÿW��r�/00

f �r�
i���b

a

� �E ÿ Ef�
Z b

a
dr/0

f �r�W��r�

ÿ �E ÿ Ei�
Z b

a
dr/0

f �r�/0
i �r� �68�

� �h2

2l
/0

f �b�W�
0�b�

h
ÿW��b�/00

f �b�
i

ÿ �h2

2l
/0

f �a�W�
0�a� � �E ÿ Ef�

�
Z b

a
dr/0

f W
��r�: �69�
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Evaluating the last integral in Eq. (69), we have

�E ÿ Ef�
Z b

a
dr/0

f �r�W��r� �70�

�
Z b

a
dr qf�r�W��r� �

Z b

a
drW��r��E ÿH�pf�r�

�71�

�
Z b

a
dr qf�r�W��r� � �h2

2l
W��r�p0f�r�
h

ÿ pf�r�W�0�r�
i���b

a
�
Z b

a
dr pf�r��E ÿH�W��r�

�72�

�
Z b

a
dr qf�r�W��r� � �h2

2l
W��b�p0f�b�
h

ÿ pf�b�W��b�0
i
�
Z b

a
dr pf�r�qi�r�

�
Z b

a
dr pf�r��E ÿH�pi�r� �73�

�
Z b

a
dr
Z b

a
dr0 qf�r�hrjG��E�jr0iqi�r0�

� �h2

2l
W��b�p0f�b�
h

ÿ pf�b�W�0�b�
i

�
Z b

a
dr pf�r�qi�r� �

Z b

a
dr qf�r�pi�r�

�
Z b

a
dr pf�r��E ÿH�pi�r�: �74�

Eq. (71) follows from Eq. (66). Plugging Eq.
(74) into Eq. (69) and Eq. (69) into Eq. (67), we get

h/0
f jV jW�i � ÿ�E ÿ Ei�

Z b

0

dr/0
i �r�/0

f �r�

�
Z b

a
dr qf�r��G�E��qi��r�

�
Z b

a
dr pf�r�qi�r�

�
Z b

a
dr qf�r�pi�r�

�
Z b

a
dr pf�r��E ÿH�pi�r�: �75�

Note that all except the ®rst and last terms in
this expression are symmetric with respect to in-
terchange of /0

i and /0
f . It is a simple exercise to

show that the sum of the ®rst and last terms are
also symmetric with respect to this interchange
(and the simultaneous interchange of Ei and Ef ).
Thus, this expression is symmetric, as it should be.
Note further that if no hard wall is present (a � 0)
then we can set c�r� � 1 so that this expression
reduces to Eq. (54).

This expression has the advantage over that of
Laughlin and Scott (Eq. (23) of Ref. [24], for ex-
ample) that no local information about W��r� is
explicitly required; everything is expressed in terms
of integrals. Obviously the Green's operator ma-
trix element required is hqf jG�E��jqii. The other
integrals are evaluated by quadrature.

3. Computational details

In the next section we will present o�-shell T-
matrix calculations for a 1-D Lennard-Jones sys-
tem considered by Brumer and Shapiro [29] and
the model rotationally inelastic H2±He potential of
Johnson and Secrest [35]. In this section, the basis
sets and constants used in this paper will be dis-
cussed. In all cases �h � 1.

For the 1-D potential, the inhomogeneous
Schr�odinger equation is

E
�
� �h2

2l
d2

dr2

�
ÿ l�l� 1�

r2

�
� � r

r

� �12
�

ÿ r
r

� �6
��

W; �76�

� �E ÿ Ei�jl�kir�=ki; �77�

where jl�kir� is a Ricatti±Bessel function. Due to
the singular behavior of the Lennard-Jones po-
tential at r � 0 we impose hard wall bound-
ary conditions at r � a > 0. The reduced mass in
this paper is 1744.57338 a.u. while � and r are
5:62� 10ÿ4 and 5.5 a.u., respectively. These values
are the same as those used by Brumer and Shapiro
who in turn were studying a model Hg±H2 scat-
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tering problem presented by Marchi and Mueller
[36].

The radial coordinate is divided into N sectors
of equal length. (The equal size restriction is not
necessary, merely convenient.) The ith sector is
bounded by radial values ri and riÿ1 with r0 � a.
On each sector, we make the coordinate transfor-
mation

x � 2�r ÿ riÿ1�=�ri ÿ riÿ1� ÿ 1: �78�
We then de®ne a discrete variable representa-

tion (DVR) based on a suitable function basis
(function basis representation (FBR), in the no-
menclature of the Light group [37,38]). In the
DVR approach, the matrix representation for the
coordinate, or a suitable function of the coordi-
nate, evaluated in the FBR is diagonalized,

�TTxT�ab � xadab: �79�

The orthogonal matrix T is the FBR±DVR
transformation. In this paper we always diago-
nalize the coordinate x from Eq. (78). The discrete
eigenvalues xa then yield eigenvalues ra by means
of the inverse transformation. The symmetrized
kinetic energy is evaluated in the function basis
and transformed to the DVR using T. The po-
tential is approximately diagonal in the DVR,

VDVR
ab � V �ra�dab: �80�

In the studies that appear in this paper, the
function basis on the ith sector is always chosen to
be classical orthogonal polynomials [39] multiplied
by the square roots of their corresponding weight
functions, i.e.

/i
n�x� � N i

nw�x�1=2P i
n�x�; �81�

where the polynomials P i
n are orthonormal on the

range x 2 �ÿ1; 1� with respect to weight w�x� and
the normalization coe�cient N i

n makes the func-
tions /n orthonormal on the range r 2 �riÿ1; ri�
(with unit weight). With this choice of functions,
the transformation matrix has elements [40]

Tna � ������
xa
p

P i
n�xa�; �82�

where xa and xa are the quadrature points and
weights, respectively, of the Gaussian quadrature

corresponding to P i
n. Now, if we wish to eval-

uate the representation of an L2 function (on a
sector) in the DVR, we begin by expanding it in
the FBR,

f �x� �
X

n

cn/
i
n�x� �83�

and transforming the vector of coe�cients cn to
the DVR using the transformation matrix T. Us-
ing Eq. (82) and the de®nition of the functions /i

n,
we can see that the vector f representing the
function f �x� in the DVR has elements

fa � x0af �xa�; �84�

where x0a � xa=
�����������
w�xa�

p
. It is easy to see that if two

L2 functions are represented in this fashion, the
inner product of their DVR representations is
precisely the inner product of the functions eval-
uated in the Gaussian quadrature.

For the Lennard-Jones potential problem, we
choose on the ®rst sector

/1
n � �1� x�P �0;2�n ; �85�

where P �0;2�n is a Jacobi polynomial [41]. This set of
functions, and therefore the corresponding DVR,
goes to zero at r � r0 � a, and obeys no ®xed
boundary conditions at r � r1. For all other sec-
tors, the function basis consists of Legendre
functions of x normalized to unity on the range
�riÿ1; ri�. On each sector except the ®rst, the con-
tribution to each of the integrals in Eq. (75) from
that sector is evaluated by the inner product of the
DVR representations of the functions /i;f , qi;f , pi;f ,
and so forth. On the ®rst sector, the integral is
evaluated via Gauss±Legendre quadrature. The
reason for this modi®cation is that except for pi;f ,
the functions appearing in the integrals in Eq. (75)
do not go to zero at r � a. A Gaussian quadrature
based on the Jacobi polynomials P �0;2�n is not as
e�cient as a Gauss±Legendre quadrature for such
integrals.

If an o�-shell T-matrix element is desired at
many energies E, it is helpful to diagonalize the
energy-independent part of ~ai on each sector;
that is, to diagonalize the symmetric part of the
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sector Hamiltonian. From Eq. (37), we then see
that in the representation of eigenvectors of HS

i ,
the matrix ~ai is the sum of a diagonal matrix
and a low-rank nondiagonal matrix, since the di-
mension of Ui

l is ni � 2 with ni � 2. Thus, this
matrix is inverted very easily by means of the
Sherman±Woodbury formula [42]. The matrices
Ui

l and Ui
r and the vectors f i and gi must also be

transformed into the eigenvector basis to evaluate
the Green's operator matrix element correctly, of
course.

This paragraph assumes that the original basis
is orthogonal, which is always the case in this
paper.

For the rotationally inelastic H2±He model, we
choose as a coordinate system the spherical polar
coordinates in a space-®xed frame of the vector r

between the H atoms and the vector R from the H2

center of mass to the He atom. The magnitude of r

is ®xed at r0 (� 1 a.u. in this paper), so the coor-
dinate space is 5-D. The scattering coordinate is R,
the magnitude of R. As in the 1-D problem, R is
divided into N sectors of equal size. On each sector
i a basis is constructed of the form

UiJM
nlj � /nl�R�YJM

jl �r̂; R̂�; �86�

where r̂ and R̂ are the unit vectors along r and R,
respectively, and

YJM
jl �

X
ml;mj

hjmjlml jJMiYjmj �̂r�Ylml�R̂�; �87�

where hjmjlml jJMi is a Clebsch±Gordan coe�-
cient [43]. The inhomogeneous Schr�odinger equa-
tion then has the form

E
�
� �h2

2l1

r2
R �

�h2

2l2

r2
r ÿ V �R; r̂ � R̂�

�
W

� �E ÿ Ei�jli�kiR�YJM
liji
=ki: �88�

The reduced masses are l1 � mHemH2
=�mHe�

mH2
� � 2448:909 a.u. and l2 � mH2

=2 � 1799:381
a.u.

Following common practice [35,43], we expand
the potential in a Legendre series in the angle be-
tween R and r,

V �R; R̂ � r̂� �
X

k

Vk�R�Pk�R̂ � r̂�: �89�

On sectors with i > 1, the radial factor of the
basis is a Legendre DVR in x � 2�Rÿ Riÿ1�=
�Ri ÿ Riÿ1� ÿ 1, as in the 1-D case. On these sec-
tors, then, the potential is (approximately) dia-
gonal in the radial factor, as in the 1-D case

V JM
jla;j0l0b � dab

X
k

Vk�R�xa��f JM
j0l0jlk; �90�

where

f JM
j0l0jlk �

Z
dr̂

Z
dR̂YJM�

j0l0 �R̂; r̂�Pk�R̂ � r̂�YJM
jl �R̂; r̂�;

�91�

the formula for which is given in Eq. (44) of Ref.
[43]. For the Johnson±Secrest potential [35], the
Legendre coe�cients are given by

V0�r� � V0eÿar;

V2�r� � bV0eÿar;

Vi6�0;2 � 0

with V0 � 17:2828 a.u., a � 2:027 a.u. and b �
0:375.

If we add a hard wall to the potential at
R � a > 0, then we can also choose a radial ba-
sis consisting of a Jacobi DVR based on the
polynomials P �0;2�n , as in the 1-D case, and once
again the potential will be diagonal in the DVR.
When the potential is nonsingular so that the
origin is physically accessible, it may be more
appropriate to choose a radial basis which de-
pends on the orbital angular momentum l. We
choose a DVR based on Jacobi functions of order
�0; 2l�;

/nl � N l
n�1� x�lP �0;2l�

n �x�: �92�
These functions behave as Rl as R! 0 because

of the weight function. Potential matrix elements
corresponding to l � l0 will still be diagonal in the
radial factor of the resulting basis. Since di�erent l
values give rise to di�erent DVR's, the potential

20 D. Brown / Chemical Physics 259 (2000) 11±26



couples di�erent DVR points when l 6� l0. To
compute such matrix elements, we ®rst compute
the overlaps of the Jacobi functions for di�erent
l's,

Oll0
nn0 � Nl

nN l0
n0

Z
dx�1� x�l�l0P �0;2l�

n �x�P �0;2l0�
n0 �x�:

�93�
These matrix elements can be computed exactly

using the recursion relations among di�erent Ja-
cobi polynomials [41]. Labeling the DVR±FBR
transformation matrix for orbital angular mo-
mentum l as Tl, we have for l > l0

V JM
jla;j0l0b �

X
knn0

Tl
naOll0

nn0T
l0
n0bVk R xl0

b

� �� �
f JM

j0l0jlk: �94�

Since total angular momentum is conserved in
this problem, all matrices are diagonal in J. To
complete the description of the basis, we must
choose which functions YJM

lj to include on each
sector; that is, which values of l and j to include in
the basis for ®xed J. (All matrix elements in this
problem are independent of M, which is set to
zero.) Recall that the functions YJM

lj are eigen-
functions of the parity operator with eigenvalues
�ÿ1�l�j

[43]. We then choose a maximum number
of rotor states nj independent of the sector. For an
accurate description of the matrix elements, this
set may have to include some rotor quantum num-
bers corresponding to channels that are closed at
energy E [33]. Then all orbital angular momenta l
consistent with the triangle inequality jJ ÿ jj 6
l 6 J � j and parity constraints are included in the
basis.

To de®ne the surface basis used to impose the
constraints of continuity and di�erentiability with
respect to R at the sector boundaries, the surface
Hamiltonian at each boundary value R � Ri was
computed in the basis YJM

lj and diagonalized. The
surface Hamiltonian eigenvectors were used as the
surface basis.

The kinetic energy operators are diagonal in the
functions YJM

lj ; thus, to compute the kinetic energy
matrix elements, we evaluate the radial derivative
operators in the radial function bases and trans-
form them to the DVR using the FBR±DVR

transformation matrices just as in the 1-D case.
Likewise, when evaluating the components of an
L2 function in our basis, each angular momentum
component of the function is evaluated in the ra-
dial DVR as in the 1-D case.

4. Results

In this section we examine the o�-shell T-matrix
as a function of initial and ®nal wavenumber ki

and kf , respectively, for the models discussed in
the previous section. Fig. 1 shows the o�-shell
T-matrix at energy E � 0:0018375 a.u. and j � 0
for the Lennard-Jones potential. The hard wall is
®xed at r0 � 2 a.u and rmax � 105 a.u. For initial
and ®nal energies less than E the T-matrix exhibits
a complicated oscillatory structure. As ki and kf

approach kE �
���������
2lE
p

=�h the width of the variation

Fig. 1. Real and imaginary parts of the T-matrix for the 1-D

Lennard-Jones potential as functions of initial and ®nal as-

ymptotic momenta ki and kf , respectively, for E � 0:0018375

a.u. and j � 0. The arrows point to the on-shell values.
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about the line ki � kf decreases. When ki and kf are
larger than kE, the imaginary part of the T-matrix
goes to zero while the real part has a narrow ridge
along the line ki � kf . This ridge does not decay in
magnitude but approaches, for ki � kf , a constant
value of �h2r0=4l � 2:866� 10ÿ4 a.u. This ap-
proach to a constant value is a manifestation of
the hard wall. This result also appears in the paper
of Laughlin and Scott [24] for hard-wall scattering
(corrected for di�erences in units and normaliza-
tion).

Fig. 2 shows the T-matrix for j � 12. Once
again there is a low-energy region characterized by
complicated structure in the T-matrix and a high-
energy region characterized by a ridge in the real
part of the T-matrix that changes very little along
the line ki � kf and rapid decays to zero as jki ÿ kf j
becomes large. Unlike the j � 0 case, the two re-

gions overlap. The amplitude of this T-matrix is
two orders of magnitude less than that for the
j � 0 case, a result consistent with those of Brumer
and Shapiro for the same potential [29] which in-
dicates the convergence of the partial wave ex-
pansion for the T-matrix. Note that the symmetry
in the T-matrix elements with respect to inter-
change of ki and kf , which is not obvious from Eq.
(75), is apparent in this plot. The on-shell values of
the T-matrix obviously appear on the line ki � kf .
The T-matrix along this line, with the on-shell
values, is shown in Fig. 3.

To assess the convergence properties of this
method ± and to substantiate the claim that the
results shown so far are indeed o�-shell T-matrix
elements ± we test the o�-shell unitarity of the re-
sults shown in Fig. 1. One version of the o�-shell
unitarity relation for a T-matrix element, given our
choice of normalization is [44]

Im�tkk0 �E�� � ÿ2lkEtkkE�E��tk0kE�E�; �95�

Fig. 2. Real and imaginary parts of the T-matrix for the 1-D

Lennard-Jones potential as functions of initial and ®nal as-

ymptotic momenta ki and kf , respectively, for E � 0:0018375

a.u. and j � 12.

Fig. 3. Real and imaginary parts of the T-matrix for the 1-D

Lennard-Jones potential from Fig. 2 along the line ki � kf � k.

The arrows point to the on-shell values.
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where kE �
���������
2lE
p

=�h and tkk0 �E� � hkjT �E�jk0i. The
results plotted in Fig. 1 are the T-matrix plotted on
a uniform 40� 40 grid of initial and ®nal wave-
numbers. We de®ne a maximum error Dmax by

Dmax � max grid �Im�tkk0 �E��
n

� 2lkEtkkE�E��tk0kE�E��=

min�jIm�tkk0 �E��j; j2lkEtkkE�E��tk0kII
�E�j�

o
;

�96�

the largest relative di�erence between the two sides
of Eq. (95) among all the T-matrix values on the
grid. The maximum error as a function of number
of sectors N and the number of basis functions n
per sector is shown in Table 1. We can see that
keeping the number of sectors ®xed and increasing
the number of basis functions per sector leads to
more rapid convergence than keeping n ®xed and
increasing N. This behavior is typical of a ®nite
element calculation of this type [45].

Fig. 4 shows the T-matrix for the model H2±He
potential for J � ji � jf � li � lf � 0 and energy
E � 1:8375� 10ÿ3 a.u. The radial range was
truncated at R � 15 a.u. The structure is quite
similar to the j � 0 T-matrix for the Lennard-
Jones potential. The ridge in this case gradually
decays to zero. Fig. 5 shows the same T-matrix
at the higher energy E � 8:3326� 10ÿ3 a.u. The
``low-energy'' region of complicated oscillations is
substantially larger than in Fig. 4, and the peaks in
both the real and imaginary parts of the T-matrix
have a larger amplitude. The high-energy ridge is

still present but is too small to be seen on the scale
of the low-energy peaks.

Fig. 6 shows the T-matrix for J � 6, ji � jf � 2,
li � 8, lf � 4, and E � 1:8375� 10ÿ3 a.u. The
structure present at the origin in the J � 0 plots is
suppressed by the centrifugal potential (an e�ect
seen in the l � 12 T-matrix for the 1-D potential as
well). The high-energy ridge is also present but
there is more oscillation along the lines perpen-
dicular to ki � kf than in the elastic transitions
shown in Figs. 4 and 5.

Fig. 7 shows the T-matrix for J � 17, ji � 0,
jf � 2, li � lf � 17, and E � 1:8375� 10ÿ3 a.u.
The on-shell values are essentially zero, consistent
with a rapid convergence of the partial wave ex-
pansion of the scattering wavefunction. While the
low energy oscillatory region is present, the real
part is dominated by the high-energy ridge.

Table 1

Maximum deviation Dmax from o�-shell unitarity of the results

from Fig. 1 as a function of radial basis n per sector and the

number of sectors N

n N Dmax

5 320 4:5� 10ÿ4

7 320 1:3� 10ÿ7

9 320 4:6� 10ÿ8

11 320 1:9� 10ÿ8

5 360 4:5� 10ÿ4

5 400 2:2� 10ÿ4

5 450 7:0� 10ÿ5

5 500 2:0� 10ÿ5

Fig. 4. Real and imaginary parts of the T-matrix for the model

H2±He problem as functions of initial and ®nal asymptotic

momenta ki and kf , respectively, for E � 0:0018375 a.u., total

angular momentum J � 0, initial orbital and rotor angular

quantum numbers li � 0 and ji � 0, respectively, and ®nal or-

bital and rotor angular quantum numbers lf � 0 and jf � 0,

respectively. The arrows point to the on-shell values.
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All the results for both model systems share a
number of characteristics: a low-energy region
characterized by highly oscillatory variations in
the T-matrix that depend strongly on energy and
angular momentum; a high-energy ridge that de-
cays very slowly to a constant value (zero if no
hard wall is present) as ki and kf become large,
which oscillates along lines of constant ki � kf to a
degree that depends on whether the transition is
inelastic or not, and which depends relatively
weakly on energy. How general these properties
are remains to be seen.

5. Conclusion

I have presented a cellular variant of the Kohn
variational algorithm for the Green's operator

which admits a recursive computation of its
matrix elements. The technique presented is es-
sentially a rearrangement of the equations that
result from the variational formula of Miller
and Jansen op de Haar [33] within a ®nite ele-
ment basis [46]. In addition, a convenient ex-
pression for o�-shell T-matrix elements has been
derived which is be applicable even when the
potential has a hard wall component, and which
is amenable to computation via the recursive
KVP. The technique appears to be stable and
rapidly convergent on the test cases presented
herein.

It should also be stressed that any matrix ele-
ment of a Green's operator can be computed using
the present recursive algorithm, provided that the
potential is local.

Fig. 5. Real and imaginary parts of the T-matrix for the model

H2±He problem as functions of initial and ®nal asymptotic

momenta ki and kf , respectively, for E � 0:0083362 a.u., total

angular momentum J � 0, initial orbital and rotor angular

quantum numbers li � 0 and ji � 0, respectively, and ®nal or-

bital and rotor angular quantum numbers lf � 0 and jf � 0,

respectively. The arrows point to the on-shell values.

Fig. 6. Real and imaginary parts of the T-matrix for the model

H2±He problem as functions of initial and ®nal asymptotic

momenta ki and kf , respectively, for E � 0:0018375 a.u., total

angular momentum J � 6, initial orbital and rotor angular

quantum numbers li � 8 and ji � 2, respectively, and ®nal or-

bital and rotor angular quantum numbers lf � 4 and jf � 2,

respectively. The arrows point to the on-shell values.
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